skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mao, Huachao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Though 3D printing shows potential in fabricating complex optical components rapidly, its poor surface quality and dimensional accuracy render it unqualified for industrial optics applications. The layer steps in the building direction and the pixelated steps on each layer's contour result in inevitable microscale defects on the 3D‐printed surface, far away from the nanoscale roughness required for optics. This paper reports a customized vat photopolymerization‐based lens printing process, integrating unfocused image projection and precision spin coating to solve lateral and vertical stair‐stepping defects. A precision aspherical lens with less than 1 nm surface roughness and 1 µm profile accuracy is demonstrated. The 3D‐printed convex lens achieves a maximum MTF resolution of 347.7 lp mm−1. A mathematical model is established to predict and control the spin coating process on 3D‐printed surfaces precisely. Leveraging this low‐cost yet highly robust and repeatable 3D printing process, the precision fabrication of multi‐scale spherical, aspherical, and axicon lenses are showcased with sizes ranging from 3 to 70 mm using high clear photocuring resins. Additionally, molds are also printed to form multi‐scale PDMS‐based lenses. 
    more » « less
  2. Abstract A new manufacturing paradigm is showcased to exclude conventional mold‐dependent manufacturing of pressure sensors, which typically requires a series of complex and expensive patterning processes. This mold‐free manufacturing leverages high‐resolution 3D‐printed multiscale microstructures as the substrate and a gas‐phase conformal polymer coating technique to complete the mold‐free sensing platform. The array of dome and spike structures with a controlled spike density of a 3D‐printed substrate ensures a large contact surface with pressures applied and extended linearity in a wider pressure range. For uniform coating of sensing elements on the microstructured surface, oxidative chemical vapor deposition is employed to deposit a highly conformal and conductive sensing element, poly(3,4‐ethylenedioxythiophene) at low temperatures (<60 °C). The fabricated pressure sensor reacts sensitively to various ranges of pressures (up to 185 kPa−1) depending on the density of the multiscale features and shows an ultrafast response time (≈36 µs). The mechanism investigations through the finite element analysis identify the effect of the multiscale structure on the figure‐of‐merit sensing performance. These unique findings are expected to be of significant relevance to technology that requires higher sensing capability, scalability, and facile adjustment of a sensor geometry in a cost‐effective manufacturing manner. 
    more » « less